Microscopy laboratories in US in 2021? Scanning electron microscopy with energy dispersive xray spectroscopy (SEM-EDS) was used to identify the particles. The SEM showed an elevated concentration of iron and iron oxide in the impacted areas. The backscatter electron (BSE) image which correlates brightness in the image with atomic density, highlighted the iron particles that were embedded in the tile and the EDS spectrum confirms the PLM Image chemical composition of these higher density particles.
Analysis and Results: The submitted bottle was examined for signs of interior distress, and the water from the bottle was removed and maintained. Some of the suspended particulate was filtered and examined non-destructively by light microscopy first, to characterize the material. A low magnification stereo microscope image of the filtered white particulate is shown in the image above. From this image, biological tissues were ruled out, and the material was observed to be crystalline. Polarized light microscopy (PLM) was used to analyze the sample next. From this examination, the material showed birefringence as shown in the PLM image on the right. The PLM Image Stereo Microscope image suspect material showed optical properties and morphology dissimilar to common carbonates and sulfates. It was determined to be a birefringent crystalline material, but it could not be identified using only PLM methods. Therefore, analysis using scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS) would have to be performed to obtain further information about the suspect material.
An affected floor tile was submitted to determine if the previous mold testing had missed a source on the tile backing or mastic. Additionally, a new tile from the same manufacturing lot was submitted for comparison. The process of preparing and examining the sample and reference tile was documented. Areas with darkened surface features were imaged and then cut out and examined. While the dark spots looked very discrete when examined by eye, under top light polarized microscopy they appeared more diffuse at the outer edges. The darkest areas surrounded what appeared to be particles embedded in the surface.
MicroVision Laboratories, Inc. has been providing extensive expertise in micro-analytical techniques (FE-SEM, SEM, EDS, XRF, FTIR testing, PLM, X-Ray Imaging, DIC) and sample preparation since 2003. Our cutting edge, high-performance equipment combined with our solutions-focused customer service provide critical solutions for clients hailing from a broad range of industries ranging from medical to semiconductor, and from environmental to textile. Read a few extra info on Microvision labs services.
What if I want a service not listed in your services list? At MicroVision Labs the list of services which we provide to our clients is constantly growing. So if you don’t see what you are looking for give us a call or use the Contact Us tab. Also don’t forget to check our Additional Services Page to see if it might be listed there. Can you identify a contamination or unknown for us? Yes, we call that an Unknown Material ID and we routinely work on that kind of project. We have a number of individual tests designed to classify unknown materials. When combined with our extensive suite of equipment, these tests allow us to identify virtually any material. Give us a call and talk to one of our knowledgeable staff for more information.
In Fourier Transform Infrared (FTIR) Spectroscopy samples are subjected to a broad frequency spectrum of infrared light which spans the energies of intramolecular vibrations, especially in organic compounds. The pattern and intensity of frequencies absorbed by a sample are plotted, which gives structural information about the chemical bonding state of the material. Organic compounds, which are generally very similar from an elemental standpoint, can be separated and identified using these structural fingerprints. Explore a few more info at here.